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The statistical relationship between a passive scalar and its dissipation is important for 
both a basic understanding of turbulence small-scale properties and for various aspects 
of turbulent combustion modelling. This problem is studied in two different flows 
through spectral analysis as well as probability density functions using temperature as 
a passive scaiar. Particular attention is paid to the experimental determination of the 
three squared derivatives involved in the temperature dissipation. As a first step, it is 
found that basic properties such as the correlation coefficient between temperature and 
its dissipation are strongly related to the asymmetry of the scalar fluctuations, so that 
the usually assumed statistical independence between these variables is not justified. 
These trends are the same for the two flows investigated here, a boundary layer and a 
jet. This connection appears to be related to fluctuations of small amplitude for both 
quantities which are associated with relatively low frequencies lying between the 
integral scale and the Taylor microscale. In regions where the temperature skewness 
factor is nearly zero, the correlation coefficient is also very small, and several tests show 
that the assumption of independence is then fully justified. Thus, the main parameter 
influencing joint statistics of temperature and its dissipation is the asymmetric feature 
of temperature fluctuations, but the asymmetry of the longitudinal temperature 
derivative, which results from the flow boundary conditions and is usually felt through 
the presence of the so-called temperature ramps, is also involved. Even though the 
magnitude of the derivative skewness factor is almost uniformly distributed in both 
flows, the secondary effect becomes the dominant one in flow regions where the 
influence of the temperature asymmetry is relatively weak. 

1. Introduction 
Over the last decade, much attention has been paid both experimentally and 

numerically to the turbulent transport of scalars, partly because of the relevance of 
these studies to the problems related to turbulent combustion and partly because quite 
unexpected properties have appeared. For instance, it was shown that, even though 
passive scalars do not affect the velocity field structure, such scalars cannot so far be 
completely determined from our present knowledge of the velocity field turbulence 
mixing properties. For instance, the study of heated grid-generated turbulence 
performed by Warhaft & Lumley (1978) has clearly shown that even in this basic 
situation the passive scalar properties (such as the temperature variance decay rate or 
the dissipation characteristics) strongly depend on its initial conditions. Indeed, Bilger 
(1 989) has underlined in a quite recent review paper of turbulent combustion problems 
that new results ‘improving our understanding of turbulent transport and mixing of 
scalars, including the structure of scalar-dissipation fields ’ are eagerly awaited even 
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when these scalars are not involved in chemical reactions and when they are passive 
contaminants. 

The mean value < of the scalar dissipation (e.g. the destruction rate of half the scalar 
variance $P) is an important quantity which appears in various modelling approaches 
of turbulent flows. But the crucial role of the scalar dissipation rate also appears in the 
probability density function (p.d.f.) models which were initially developed for solving 
combustion problems: it is at present well known that in both premixed (Bray 1980) 
and diffusion (Bilger 1980) flames, the average rate of creation or destruction of 
chemical species can be related to the joint probability density function (j.p.d.f.) of an 
inert contaminant 8 and its dissipation c6. In a more recent model of turbulent reacting 
flows based on the variation through the flow field of averages of quantities, such as 
species mass fractions, conditional on mixture fraction, the conditional square gradient 
appearing in the diffusion mixing term has also to be modelled (Bilger 1993). Similarly, 
the flamelet modelling of non-premixed flames recently tested by Vranos (1 992) 
requires an assumption for the j.p.d.f. of the local mixture fraction and its dissipation 
rate since this quantity is used for linking the separately performed calculations of the 
laminar flamelets and of the underlying turbulent field. Statistical independence has so 
far been assumed. On a more general basis, the mapping closure technique (Chen, 
Chen & Kraichnan 1989), worked out to describe the mixing of scalars in various 
turbulent fields, also showed that one of the main problems lies in the modelling of the 
conditional scalar dissipation, which is directly connected to the j.p.d.f. of the scalar 
and its dissipation. It has been proved (Gao 1991) that, for a Gaussian field, the two 
quantities are statistically independent, but the well-known problem of achieving 
relaxation of initially binary statistics to Gaussianity has so far not been resolved 
(O’Brien & Sahay 1992). In other models associated with the p.d.f. formulation (e.g. 
Borghi & Gonzalez 1986; Pope & Chen 1990), length or time scales are also related to 
the j.p.d.f. of an inert scalar and its dissipation. 

Most of the studies devoted to dissipation have been concerned with mean-squared 
derivatives in connection with local isotropy and/or axisymmetry assessment. 
However, Namazian, Scheffer & Kelly (1988) obtained dissipation statistics in the 
developing region of an isothermal methane jet issuing into still air using Raman 
scattering showing that, in the shear layer near the jet exit, the scalar and its dissipation 
are highly correlated. Such a strong correlation is in opposition to Bilger’s (1976) 
conjecture that 8 and co might be statistically independent so that their j.p.d.f. can be 
replaced by the product of the marginal p.d.f.s. This result also seems different from 
that obtained by Anselmet & Antonia (1985) in a weakly heated turbulent plane jet: 
iso-j.p.d.f. contours between temperature and an approximation to co evaluated from 
the temperature temporal derivative are roughly similar to the contours of the product 
of the marginal p.d.f.s. Nevertheless, when these results are thoroughly examined 
(Anselmet & Antonia 1985, figure 5 ,  p. 1052), it is obvious that this hypothesis is 
strictly verified only where the skewness So of temperature fluctuations is practically 
zero and the intermittency factor y is about 1 ; on the axis, where So z -0.8 and y = 1, 
the assumption of independence is much less justified. Thus, one may wonder whether 
the statistical independence between 8 and co is related to the symmetry of temperature 
fluctuations. A similar trend is observed in direct numerical simulations of the 
turbulent mixing of a passive scalar (Eswaran & Pope 1988) where it is found that the 
conditional scalar dissipation (eo/t9 = 0,) (for a given value 8, of 8) is strongly 
dependent on 8, for small times corresponding to a bimodal p.d.f. of 8, and becomes 
independent of 8, at long times when the &distribution tends to a Gaussian. These 
results are also related to the recent experimental study by Jayesh & Warhaft (1992) 
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showing, in grid-generated turbulence with a linear mean temperature gradient, very 
large conditional scalar dissipation rates associated with the temperature fluctuations 
corresponding to the observed p.d.f. exponential tails. 

In addition to the scalar field asymmetry, a relevant feature may be the intermittent 
character of some regions of the flow : what is happening when intermittency is strong, 
i.e. y 6 l ?  And, more generally speaking, are there any other local or global flow 
characteristics influencing the link between a passive scalar and its dissipation? In 
order to analyse a turbulent flow which has regions where the skewness of scalar 
fluctuations strongly differs from zero with one of them where, in addition, the 
intermittency factor strongly departs from unity, a weakly heated boundary layer has 
been first studied. Experimental techniques for measuring the dissipation fluctuations 
were first thoroughly tested in this flow as the wire lengths, their relative spacing, and 
other parameters may strongly affect such measurements. Then, a second flow, a 
slightly heated jet, was studied in order to check the universality of results obtained in 
the boundary layer as these flows present some very different features. We will mainly 
discuss results obtained at three typical positions in each of the boundary layer and jet 
flows for which joint statistics of temperature and its dissipation significantly differ. 

For the boundary layer, the expression for co is 

where D is the thermal diffusivity, x the streamwise distance, y the normal to the wall 
one and z is along the spanwise direction. In order to simultaneously determine these 
gradients, a four-wire probe is necessary since the longitudinal derivative is inferred 
from the temporal one using Taylor's hypothesis. The optimal dimensions of that 
probe were determined from a systematic study using two-wire probes. Section 2 will 
briefly recall the main characteristics of the two flows and the measurement methods, 
and $ 3  will report the results on the joint statistics of temperature and its dissipation 
obtained from the combined spectral and probabilistic analyses. 

2. Experimental arrangement 
Only a brief description of the experimental procedures will be reported here since 

a thorough description of both the flow characteristics and the determination of the 
probe configurations is reported in Anselmet, Djeridi & Fulachier (1994). The reader 
may also refer to Djeridi (1992). 

2.1. Experimental facilities 
2.1.1. Boundary layer pow 

The turbulent boundary layer develops on the working section floor of a low-speed 
wind tunnel and its characteristic properties have already been studied in detail (e.g. 
Fulachier 1972; Antonia et al. 1988). The wall is heated to a constant temperature 0, 
from the beginning of the layer such that the difference with respect to the ambient 
temperature 0, is 10 K and heat is acting as a passive scalar. At the measurement 
station, the free-stream velocity is U, = 12 m s-', the boundary layer thickness is 
6 = 62 mm and the momentum thickness Reynolds number is 4900. The friction 
velocity and temperature are u* = 0.46 m s-l and 8* = 0.47 K respectively. Profiles for 
the mean and fluctuating velocity and temperature fields are in very good agreement 
(e.g. Antonia et al. 1988) with the standard ones throughout the boundary layer. 
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Values of the Kolmogorov lengthscale 7 vary from about 0.1 mm in the wall region to 
0.5 mm in the outer part of the flow. The associated frequenciesf,( = U/2xy)  are about 
2.5 KHz very close to the wall at the limit position where measurements could be made 
y+ = 3 (y' = yu*/v with v, kinematic viscosity), 12 KHz at y+ z 180, in the region 
where it is maximum, and 4 KHz in the outer part of the boundary layer. The Reynolds 
number R, defined with respect to the Taylor microscale A, and the r.m.s. of the 
longitudinal velocity fluctuations is almost constant within the boundary layer, with a 
value of about 130. 

2.1.2. Jet f low 
The jet flow is obtained from a fully developed turbulent pipe flow (primary flow, 

mean axis velocity Uj = 12 m s-I) discharging into ambient air (secondary flow, 
U ,  = 1.2 m s-I) in a slightly confined configuration. The Reynolds number 
Rj = Uj D,/v is then about 21 000 (where Dj = 26 mm is the nozzle diameter). The exit 
temperature difference between the primary and secondary flows is Oj - 0, = 20 K. 
The main characteristics of this flow are in good agreement with the usual ones for the 
axial mean velocity and temperature difference fall-offs, the jet half-width growths and 
the turbulent velocity field main properties (Amielh et al. 1994). However, as they 
could not be measured in a systematic way, the dissipation field characteristic length 
and frequency scales were estimated using a second-order model developed in parallel 
to the experimental work performed in this jet facility (Ruffin et af .  1994). The jet 
exit value ( q  = 0.005Dj) corresponds very closely what is usually found in turbulent 
pipe or channel flows, 7 z 0.00530,. This value is constant until X / D ,  z 4, with f, 
about 15 KH, and R, about 100. Then, 11 goes through a minimum value attained at 
X z 8 0 ,  where C reaches its maximum centreline value and f, is much greater than 
10KHz: measurements with fine wires are as yet impossible in this region. At the 
downstream station X = 15D, where most of the experiments reported are performed, 
7 on the jet axis is about 0.1 mm, withf, about 9 KHz and R, about 200. At the same 
station, away from the axis, 71 is almost the same as on the centreline since radial 
variations of c are very small, at least in regions where intermittency is not large. 
However, at the off-axis position ( X  = 15Dj and R = 20,) where detailed results will 
also be reported in this paper, the intermittency factor is about 0.3, cis about 10 times 
smaller than on the centreline and 7 is then about 0.1 7 mm. At this station, the velocity 
half-width is about 30 mm so that R = 2 0 ,  corresponds to a distance slightly larger 
than twice the jet half-width. 

It  is interesting to mention that an important difference exists between the boundary 
conditions for the jet flow and the boundary layer, which appears to play a role in some 
of the results reported in this paper. Indeed, for the former case, large velocities 
correspond to large temperature values (on the jet axis) whereas small velocities 
correspond to small temperature values (in the regions far from the axis). On the other 
hand, for the latter case, large velocities correspond to small temperatures in the outer 
region, and vice versa in the wall region. This difference is known to affect the small- 
scale statistics of the temperature field (e.g. Mestayer et al. 1976). In addition, the jet 
flow is characterized by turbulence intensities significantly larger than those generally 
encountered in the boundary layer, but the conditions are generally much closer to 
isotropic ones than those for the boundary layer. 
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FIGURE 1. Determination of the temperature mean-squared derivative using pairs of wires, obtained 
in the boundary layer at y+ = 180 for the direction normal to the wall. (a) Temperature correlation 
coefficient for small separations. (b) Determination of the ratio (00, + Ay) - 0(y) )2 /Ay2 for different 
wire spacings; 0, raw data; a, data corrected for 'noise' level. (c) Evolution of the temperature 
difference ( 0 ( y + A y ) -  ~ 9 ( y ) ) ~  for the estimation of the 'noise' level. 

2.2. Probe arrangements 

2.2.1. One-wire probes: determination of the longitudinal derivative 
Temperature fluctuation measurements are performed with cold wires (Pt-10 % Rh) 

of diameter d equal to 0.63 pm operated with in-house constant-current circuits. The 
heating current is equal to 0.2mA such that the velocity sensitivity of the wire is 
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practically negligible and the signal-to-noise ratio is large enough to allow correct 
dissipation measurements. Since fine wires are used, the wire time constant M is very 
small. For instance, in the boundary layer, for y+ = 3 corresponding to the measure- 
ment point closest to the wall and the most critical situation, M is about 30 ps. 
The time constant M has been evaluated using the usual relation available in the 
literature (e.g. Fulachier 1978). This results in a cut-off frequency of 5 KHz to be 
compared with the Kolmogorov frequency f, about 2.5 KHz. At yf z 180, in the 
region where f, is a maximum, these frequencies are equal to 8 KHz and 12 KHz 
respectively. For results presented herein no correction is made to take into account the 
influence of M .  Indeed, it appears that the main problem is related to the spatial 
integration resulting from the wire length (I z 0.35 mm), which is about 47 close to the 
wall (y' = 2.4) and about 37 at y+ = 180. Such wire lengths are consistent with those 
used by Krishnamoorthy & Antonia (1987), i.e. 1/7 = 4.5 at y +  = 180, and those 
recommended by Wyngaard (1971) whose analysis predicts a 10% attenuation of 6 
with //? = 3 .  In order to perform fine-scale measurements in the boundary-layer, and 
especially in the wall vicinity, it is also necessary to compare the wire length to typical 
lengthscales of this flow: our value (I+ z 10) is in good agreement with that 
recommended by Klewicki & Falco (1990), 1' z 7, for measurements of the velocity 
time derivative skewness, with a momentum Reynolds number equal to the present 
one. 

The longitudinal temperature derivative has been estimated using Taylor's 
hypothesis which has been validated both experimentally and numerically (e.g. 
Antonia et al. 1984; Piomelli, Balint & Wallace 1989) when turbulence intensities are 
less than about 20 % and is, in addition, the only practical approach for simultaneous 
measurements of the three temperature derivatives. After testing several methods, the 
signal time derivative obtained with an analogue circuit was chosen, providing a linear 
gain variation up to frequencies larger than 50 KHz. Note that a special study has also 
been performed concerning end-conduction effects which result in a similar attenuation 
of the temperature and time derivative variances. These problems are discussed in 
Anselmet et al. (1994). 

2.2.2. Multi-wire probes for measurements of the two other derivatives 
In order to determine the two other derivatives, pairs of parallel wires have to be 

used, and a systematic study is necessary to determine the optimal separation between 
these wires since spatial resolution problems are quite important for such measurements 
(e.g. Mestayer & Chambaud 1979). All of these probes are home-made. The prongs are 
made from piano wires which are tapered to a tip diameter of about 0.2 mm. 

The mean values of the squared derivatives are first inferred from the behaviour of 
the spatial correlation function for small separations (e.g. Verollet 1972 ; Krish- 
namoorthy & Antonia 1987). Indeed, a Taylor series expansion of the temperature 
along any of the directions [ gives the following expression for the correlation 
coefficient p between temperature fluctuations at two points separated by a distance 
A[ : 

In the jet flow, the term (( 1 /28")') (a@/aQ2 is always negligible, whereas, in the 
boundary layer, this quantity for ( = y is the dominant one very close to the wall. Thus, 
except in the latter region, the parabolic behaviour of the correlation coefficient curve 
for small wire separations A[ directly yields the mean-squared derivative value. For the 
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latter situation, the correction is based on the wall vicinity evolution of the temperature 
root mean square (e.g. Antonia et al. 1988): 8'+ = 0.26~' which is valid in the region 
very close to the wall. 

Figure l ( a )  shows a typical example at y+ = 180. The experimental data actually 
closely follows a parabolic evolution for separations Ay as large as about 57. However, 
at positions closer to the wall, this trend is only valid for smaller separations: at y+ = 5 ,  
it only extends to about 37. This difference may be related to increasing errors in the 
determination of both the distance between wires and the value of the Kolmogorov 
lengthscale as these quantities become smaller when getting closer to the wall. 

From this set of data (8([, t )  and O([+A[, t)) ,  one can also infer the difference signals 
O([+ A[, t )  - O([, t )  and compute their variances. This procedure should be strictly 
equivalent to that previously discussed. However, figure 1 (b) clearly shows that 
additional experimental errors appear when computing the difference signals and this 
effect gets larger with smaller separations A[ as the two initial temperature signals 
become almost identical and calibration and gain errors become more important. 
Indeed, when only the mean value of the squared temperature difference is plotted 
as a function of the squared separation Ag' (figure l c ) ,  one notices that the almost 
linear evolution does not cross to zero when A$ goes to zero. Thus, in a way similar 
to that proposed by Hannart, Gagne & Hopfinger (1985), one can simply represent this 
effect through the influence of an additional 'noise' level b2 which contaminates the 
data and remains practically constant with varying separation At2. Correcting the h82 
data from this quantity b2 yields the second distribution presented on figure l (b) ,  
showing that the evolution of 882-b2 with respect to A[' is almost flat and converging 
to the value inferred from the correlation coefficient procedure (see Anselmet et al. 
1994 for details). 

The optimal separation of pairs of wires, for each position in either of the flows 
investigated here, is then defined as that for which the measured mean-squared 
difference has the same value as the dissipation contribution obtained from the 
correlation coefficient method (see figure 1 b). These separations lie in the range 37 to 
67 in both the boundary layer and the jet. This corresponds from 0.3 to about 2 mm, 
with the smaller values obtained in the region close to the wall and the larger ones in 
the outer region of the boundary layer. In the jet, 7 variations are smaller and the range 
of separations is narrower. Obviously, these values are likely to depend on both the 
flow characteristics (including a,) and the instrumentation noise level, though we are 
not aware of a systematic study of this problem. However, we will mention that 
temperature derivative measurements in a 'pure' jet (i.e. with laminar exit conditions, 
no co-flow and R,, = 150) performed by Antonia & Mi (1993) display trends which are 
very similar to ours for the optimum wire spacing. 

Since it was decided to use a four-wire probe with a fixed geometry in order to reduce 
the probe blocking effects and make measurements less tedious, the statistical 
properties of the squared derivative signals as well as their correlation coefficients with 
temperature obtained with non-optimal spacing have also been analysed but these 
results are not reported herein (see Anselmet et al. 1994 for details). The spacing 
between the two wires ( I  z 0.4 mm) in each pair of parallel wires is about 0.3 mm. In 
order to account for the non-optimal separations of the wires and to maintain as 
closely as possible the exact balance between the three contributions to the mean total 
dissipation, multiplicative factors are applied to the three recorded instantaneous 
signals. Thus, obtained with the four-wire probe is actually equal to the value 
determined from the two-wire probe measurements. 

The various signals are low-pass filtered at the frequency cut-offf, = 10 KHz before 
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FIGURE 2. For caption see facing page. 
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on-line digitizing (37.5 KHz/channel). The high-resolution (1 5 bits with sample and 
hold systems) A/D converter is connected to a microcomputer where data (1 M-points 
corresponding to about 14 s duration) are stored. 

3. Connection between temperature and its dissipation 
As the main objective of this work is to obtain detailed joint statistics of temperature 

and its dissipation, averaged values of these quantities will not be reported as they are 
in general good agreement with the classical ones (e.g. Krishnamoorthy & Antonia 
1987 for the boundary layer, Antonia, Prabhu & Stephenson 1975 and Panchapakesan 
& Lumley 1993 for the jet). However, it is necessary to first present spectra and marginal 
p.d.f.s of the variables studied herein in order to recall the main statistical 
characteristics of these fields. It is also necessary to mention that, since results reported 
in this paper show that the connection between temperature and its dissipation is 
associated with relatively low frequencies - typically lying in the range between the 
frequencies corresponding to the integral scale and the Taylor microscale - spectral 
distributions will be plotted on semi-logarithmic scales : such a representation 
emphasizes the frequencies which are actually contributing most to the variances of the 
various quantities. In addition, in order to allow easier comparison between results 
obtained in different flow regions, the scales used for one type of plot will always be 
the same though calculations may be performed on distinct ranges of variations. This 
is the case for spectra obtained in the outer region of the jet which are significantly 
shifted to lower frequencies with respect to the spectral distributions obtained at the 
other positions. Similarly, j.p.d.f.s obtained in regions where temperature fluctuations 
are asymmetric are evaluated on significantly different ranges of centred and 
normalized fluctuations a = S/(s")li2 = O / e l  (i.e. [ - 3; 91 when S, > 0 and [ -9; 31 when 
So < 0) though they are presented over the range [-6; 61 which is suitable for 
symmetric conditions. Finally, it is worth mentioning that good statistical convergence 
was ensured for all results reported hereafter for both the number of analysed samples 
and the mesh refinement for the evaluation of the j.p.d.f.s, the conditional probabilities 
and the conditional averages (see Anselmet et al. 1994 for details). 

3.1. Flow characteristic features 
Figures 2 and 3 give examples of spectral distributions and probability density 
functions obtained in the boundary layer and the jet at the typical positions we will 
mainly pay attention to in the paper. Figure 2(a) presents spectra of temperature and 
its three squared derivatives as determined in the boundary layer at y+ = 60. For 
information, frequencies associated with the velocity field characteristic lengthscales at 
this position (integral scale L,, A, and 7) are indicated by arrows. Figures 2(b) and 2(c)  
present the temperature spectra in the three typical regions of the boundary layer and 
the jet respectively. It is interesting to note that, in the boundary layer, these three 
typical spectral distributions are not very different so that fh is almost constant 
(400-600 Hz). On the other hand, in the jet (figure 2c), the characteristic frequencies 
are significantly different for the three typical positions. 

FIGURE 2. Typical spectra in the boundary layer and the jet. (a) Boundary layer, y+ = 60: -, 8; 
---, (as/ax)z; --, ( M / C ? ~ ) Z ;  , (i38/az)z. (b)  Boundary layer, 8 :  -, y+ = 3;  ---, y+ = 60; 
...... , y+ = 1450 (also y / 6  z 0.75); with f,, z 400-600 Hz for all three positions. (c) Jet, 8 :  -, 
X / D j  = 3 (axis); ---, X / D j  = 15 (axis); ......, X / D j  = 15 (off-axis) ( R  = 20,); arrows point towards 
f ,  values. Note that for the off-axis position, FFT's are computed with 8192 points instead of 1024 
points. 
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FIGURE 3 .  Typical probability density functions in the boundary layer and the jet. (a) Boundary layer, 
y+ = 60; -, 0; ---, (2e/ax)z; -.-, (ao/ayy; ---, (ao/az)z. The plots for (ae/i?y)* and (ae/az)z 
are shifted upwards one and two decades respectively with respect to the others. (b)  Boundary layer, 
0:-, y +  = 3;  ---, y+ = 60; ...-., y /S  = 0.75. (c) Jet, 0: -, X / D ,  = 3 (axis); ---, X / D ,  = 15 
(axis); .-..., X / D ,  = 15 (off-axis). 
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Figure 3 presents the associated probability distributions plotted as functions of 
centred normalized fluctuations a. The temperature p.d.f. is symmetrical (skew- 
ness = 0) and almost Gaussian (flatness = 2.8) in the inner region of the boundary 
layer (figure 3a, y+ = 60, semi-logarithmic scales) and the well-known intermittent 
nature of squared derivatives is obvious, with very frequent small fluctuations with 
respect to the mean value and rare strong positive fluctuations. On the other hand 
(figure 3 b), the temperature p.d.f.s are asymmetric in the wall vicinity and, especially, 
the outer region of the boundary layer. This is particularly important in the outer 
region where the peak value of the temperature p.d.f. is almost equal to 4 a t  y / S  M 0.75. 
Consequently, the temperature skewness factor So significantly differs from zero close 
to the wall and in the outer region, with negative values for the former case and positive 
ones for the latter case. Similar behaviour is obtained in the jet (figure 3c) ,  with an 
almost symmetrical temperature p.d.f. on the centreline at X = 1 5Dj and asymmetrical 
ones at the two other positions. However, the distribution in the outer region at 
X = 15Dj is much less peaky than that previously presented in the boundary layer, in 
spite of a smaller intermittency factor ( y  z 0.3). This is probably mainly due to the 
molecular diffusion smoothing effect as, for the jet flow, the secondary non-heated flow 
is in direct contact with the heated primary flow as early as the very first station where 
the pipe flow is discharging into the ambient air. On the other hand, in the boundary 
layer, the heated fluid originating from the wall region is never in direct contact with 
that of the outer flow, and the molecular diffusion effect is then much smaller. Indeed, 
since the contributions to the positive skewness factor are associated with positive 
temperature fluctuations of large amplitude (a  2 2), this ‘smoothing effect’ on the 
peak of the p.d.f. is practically negligible and the skewness factor is actually slightly 
larger in the outer region of the jet (So z 3.5 for R = 20,) than in the outer region of 
the boundary layer (So z 1.2 at y+ = 1450, or y / S  M 0.75). 

3.2. Global statistics 
In order to study the link between temperature and its total dissipation or any of its 
contributions (or components), their correlation coefficients p were first determined. 
Figures 4 ( a )  and 4(b)  present these evolutions as determined in the boundary layer and 
the jet respectively, together with the temperature skewness S,  and the intermittency 
factor y. The main global feature in both flows is that, regardless of the quantity 
considered for dissipation, the correlation coefficient has the same sign as the skewness 
factor and, when S, significantly differs from zero, p also does. For instance, in the 
boundary layer, close to the wall, p and So are both rather strongly negative, whereas 
they reach quite large positive values in the outer part of the boundary layer (So = 3 
for yf = 1700, or y / S  z 0.9, where the intermittency factor y is about 0.3). On the other 
hand, in the inner region, p and So are both almost equal to zero. However, figure 4(b) 
shows that the zero-crossing points for these two quantities are not exactly the same 
since, for instance, in the jet at X/Di  = 15, So is zero at 2 R / D j  M 1.8 whereas po,EoZ is 
zero at 2R/D,  z 1. At X / D j  = 15, on the jet axis, So is about -0.4 and po,EoZ is about 
-0.05, whereas, at the off-axis position (2R/D,  = 4), these values are 3.5 and 0.2. Also 
note that, at this latter position, P , , ~ ~  is as large as 0.4. These results showing that p is 
almost independent of the quantity considered to represent dissipation, and especially 
in the boundary layer, are quite unexpected since, for instance, isotropic relations for 
the mean-squared derivatives are far from satisfied in the near-wall region of the 
boundary layer. In addition, it is now well known that spectral content (e.g. figure 2 a )  
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FIGURE 4. Distributions of correlation coefficients between temperature and its dissipation. (a) 
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or probability density functions (e.g. Sreenivasan, Antonia & Danh 1977) of the 
squared gradients can significantly differ from one another. 

3.3. Frequency contributions 
In order to investigate the contribution of individual frequenciesf to p, cospectra Co 
(such that Codf = p) between 0 and any of its dissipation components were 
computed. Distributions corresponding to eo (or eoz in the wall vicinity and at X / D j  = 3 
in the jet) are shown for typical positions in the boundary layer (figure 5a)  and the jet 
(figure 5 b). From now on, one distribution only will be given for each typical region 
since similar results are obtained for the other contributions to eo as can be expected 
from correlation coefficients previously presented. For y+ = 3 and y / S  z 0.75, the 
contributions to p are due to rather low frequencies of about the same magnitude as 
the frequencies providing the most energetic contribution to the temperature variance : 
this frequency range lies between the value corresponding to the macroscale and that 
related to the Taylor microscale. It is also interesting to note that, for larger frequencies 
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FIGURE 5. Cospectra between temperature and its dissipation. (a) Boundary layer: -, y' = 3;  ---, 
y+ = 60; ...-., y / 6  z 0.75; with ,f, z 400-600 Hz for all three positions. (6) Jet: -, X / D j  = 3 
(axis); ---, X / D j  = 15 (axis); ......, X / D ,  = 15 (off-axis); arrows point towards f, values. 

(i.e. f> 1 KHz), cospectra have a small magnitude but they systematically tend to 
change sign. Similar behaviour is obtained in the jet at positions (on the axis at 
X / D j  = 3 and off-axis at X / D j  = 15) where the correlation coefficients significantly 
differ from zero, but the frequency range differences already observed for the 
temperature spectra (figure 2c) are then also clearly visible. These trends are practically 
independent of the direction of the derivative (not shown here, see Djeridi 1992). At 
positions where p is close to zero (y' = 60 and on the axis at X / D j  = 15), the 
cospectrum is small whatever the frequency. When these cospectra are normalized, for 
each frequency, by the associated spectra in order to obtain filtered correlation 
coefficients Cf, the trends are globally quite similar to those reported on figure 5 and 
these filtered correlation coefficients can be very strong, as large as 0.8 for small 
frequencies lying between f L u  and f,. 
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3.4. Joint probability analysis 

Another way to investigate the interdependence between B and eB is to analyse their 
j.p.d.f. Figure 6 shows iso-contours of the j.p.d.f. Po, Ja, p) (where a and p represent the 
centred and normalized fluctuations of 0 and eB respectively) for the same typical 
positions as before in the boundary layer only, as results for the jet are quite similar 
according to the correlation coefficient values reported on figure 4. In order to give 
more insight into the rare but very strong dissipation fluctuations which are known to 
be crucial for other small-scale properties (e.g. Gagne 1987), the contours represented 
here correspond to levels following a logarithmic increment. Note that these j.p.d.f.s 
were evaluated with a mesh grid of 1OOx 100 boxes covering the ranges 
[-6;6]x[-2;28] r.m.s. at y+=60,  [-9;3]x[-2;28] r.m.s. at y + = 3  and 
[ -3; 91 x [ -2; 281 r.m.s. at y / S  z 0.75 but results are all presented on the same range 
([-6; 61 x [-2; 181 r.m.s.) to allow easier comparison between them. These plots are 
quite similar to those already reported in a heated plane jet for an approximation to 
to by Anselmet & Antonia (1985). However, these distributions show that the various 
magnitudes of dissipation fluctuations are clearly influenced by temperature fluc- 
tuations a when these are not symmetrically distributed. Indeed, dissipation is almost 
symmetrically distributed with respect to a when the temperature skewness S,) is close 
to zero (y’ = 60, figure 6b) for both small and large levels of the j.p.d.f. On the other 
hand, when So significantly differs from zero, high-probability contours (associated 
with small dissipation fluctuations ,4) are considerably skewed away from temperature 
fluctuations corresponding to the underlying boundary condition (i.e. ‘ cold side ’, 
a < 0, So > 0, for y / S  M 0.75, figure 6c, and ‘warm side’, a > 0, So < 0, for y’ = 3, 
figure 6a)  whereas low-probability contours (associated with large dissipation 
fluctuations p) are more regularly distributed. However, these latter contours are not 
symmetrical with respect to the temperature mean value (a = 0) but they are with 
respect to quite large positive (for So > 0) or negative (for S, < 0) temperature 
fluctuations. Nevertheless, it is also worth mentioning that, in any case, the temperature 
fluctuations of largest magnitude are always associated with very small centred 
dissipation fluctuations (p M 0). 

In order to get some insight into the statistical independence of temperature and its 
dissipation, the corresponding iso-contours for the product of the marginal p.d.f.s for 
temperature Po(or) and dissipation P,@) are reported on figure 7. At y+ = 60, where 
p NN 0, the j.p.d.f. iso-contours are practically identical with those of the product of the 
two marginal p.d.f.s (figures 6b and 7b), whereas, at y+ = 3, where p is strongly 
negative, these contours are significantly different (figures 6 a and 7 a), especially those 
corresponding to large dissipation fluctuations. Indeed, for this example (y+ = 3), 
assuming statistical independence would result in associating large dissipation with 
small positive temperature fluctuations corresponding to almost unmixed hot fluid 
whereas, as previously discussed, at this position, they are mainly associated with quite 
large negative temperature fluctuations corresponding to already mixed fluid which 
seems to be physically much more realistic. For the other example (y+ = 60), both the 
j.p.d.f. and the product of the marginal p.d.f.s associate large dissipation with 
temperature fluctuations of small amplitude which is quite natural since this 
corresponds to well mixed fluid. Similar trends are obtained for the outer region of the 
boundary layer (figures 6c and 7c), but the boundary condition then influences the 
‘cold’ side of the temperature p.d.f. Similarly, for the jet, the assumption of statistical 
independence is actually quite well justified on the centreline at the station X = 15Dj 
where the correlation coefficient po.ho is close to zero, but it is far from justified at the 
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FIGURE 8. Three-dimensional plot of iso-contours for the integrands of the correlation coefficient between 
temperature and dissipation in the boundary layer. (a )  y +  = 60, j.p.d.f. Po,ee(a, p); (b)  y+ = 60. product of the 
marginal p.d.f.s P,(a)P&); (c)y/6 = 0.75; j.p.d.f. Po,eo(a, p); (d) y /6 = 0.75, product of the marginal p.d.f.s 
Po(~)Pe,W. 
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positions where is significantly different from zero. Results for much more 
quantitative tests of independence will be reported later using conditional temperature 
probabilities and conditional-average dissipation rates. 

In fact, the observed statistical independence in regions where the temperature 
skewness is about zero results from the balance between positive and negative 
temperature fluctuations which contributes to an almost zero overall correlation 
coefficient. Iso-contours (presented here on three-dimensional plots, figure 8, plate 1) 
of the integrands associated with the correlation coefficient between fluctuations a and 
p, o ~ p P ~ , ~ ~ ( a ,  p), such that iia/3PB,,s(a,P)dad/3 = p, show that (figure 8a for y+ = 60), 
both for positive (a > 0) and negative temperature fluctuations (a < 0), these 
contributions significantly differ from zero and they are associated with dissipation 
fluctuations of very small magnitude lower than the mean value (j < 0). As expected, 
very similar behaviour is observed for the products of the marginal p.d.f.s (figure 8b). 
On the other hand, in regions where temperature fluctuations are strongly asymmetric 
(such as y / 6  z 0.75, figures 8c  and 8d),  where the assumption of independence does 
not hold at all, it is found that the connection results from the very small dissipation 
fluctuations (p < 0) associated with hot fluid (a > 0) which is practically unmixed. 
Obviously, though they are much stronger, the contributions from cold fluid (a < 0) 
associated with large dissipation fluctuations are, on the average, smaller than those 
from hot fluid since they happen significantly less often. In these regions, the 
assumption of statistical independence would tend to significantly alter the probability 
distributions as it was previously discussed, and this would result in the expected exact 
balance between positive and negative contributions to the integrands apP@(a) P&3) 
(figure 8 d) .  These findings from the j.p.d.f. analysis, together with those previously 
discussed which are obtained from cospectra, suggest that the link between temperature 
and its dissipation is associated with the low-frequency distribution of dissipation 
fluctuations which are strongly intermittent. Thus, it is interesting to investigate the 
influence of large-scale intermittency as one can imagine that this feature may 
strengthen this link since, in non-turbulent portions of signal, temperature and its 
dissipation will simultaneously be very small. 

3.5. Influence of large-scale intermittency 
In order to check whether the strongly intermittent nature of the flow far away from 
the wall (at y / 6  z 0.75 for instance) plays an important role in the previously reported 
joint statistics between temperature and its dissipation, the probabilistic analysis has 
been applied again considering only the turbulent portions of the signals. In order to 
discriminate between turbulent and non-turbulent signal portions, an algorithm was 
applied to the temperature signal, following a procedure proposed by Jacquin (1983). 
In fact, it is now well established (e.g. Kuznetsov, Praskovsky & Sabelnikov 1992) that, 
even for very high Reynolds number flows, velocity is not a precise enough variable for 
discriminating between turbulent and non-turbulent fluids as there is no sharp 
boundary between them. When fluctuations with respect to the level corresponding to 
the outer flow temperature 0, are larger than a prescribed threshold and this feature 
lasts for a lapse of time exceeding another threshold, the associated portion of signal 
is assumed to lie in a turbulent fluid pocket, The two threshold levels involved in this 
method are tuned so that the resulting coefficient of intermittency is equal to the 
classical value (i.e. y = 0.6 for that case) and the selected portions of ‘turbulent signal’ 
are then the only ones used for computing new statistics. Note that this procedure has 
first been evaluated with respect to results obtained from the temperature time-squared 
derivative signal, but using only the temperature signal was easier to implement when 
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consistency checks associated with the two other quantities eOy and were performed. 
The sensitivity of the results to the values of the two parameters was quite low and we 
finally used for this position a threshold level equal to 0.88' and a window size equal 
to 40 points (= 1.1 ms = 7/fk) .  The correlation coefficient p is then 0.21 instead of 
about 0.26 in the non-conditional case. Obviously, intermittency makes the link more 
pronounced since, in the non-turbulent portions of signal, negative temperature 
fluctuations with respect to the local mean value of that quantity, which correspond to 
the outer temperature, are of course always associated with very small negative 
dissipation fluctuations (j3) corresponding to values of that quantity (€3 actually equal 
to zero. Nevertheless, this is not at all the main cause for that link since the 'turbulent 
signals' are still strongly asymmetric owing to the large amount of cold and almost 
unmixed fluid. The j.p.d.f.s corresponding iso-contours are not reported here as they 
are almost identical to those relative to the initial signals. 

3.6. Conditional dissipation rates 

From the j.p.d.f. analysis, one can also compute the conditional centred scalar 
dissipation, which is an important quantity because, on the one hand, it is a more 
quantitative way to check statistical independence, and, on the other hand, it appears 
in the transport equation for the p.d.f. of scalars and has to be modelled. This quantity 
is defined by 

tm 

((%)/e = 00)l = s_, PPEecB/~o) dB 

(we will use the notation (Q1 hereafter for simplicity) and it has the dimension of an 
average dissipation rate. However, we also report results in the form 

((€,)lo = on>, = rI B P ~ ,  ~ a o ,  P) dp 

(or (q,)J though that quantity does not possess the dimension of an average 
dissipation rate. Indeed, the difference results from the definition of the conditional 
p.d.f., PeH(P/an) = Po,,to(an, B)/P&a,), and it lies in the values of the probability density 
function for the various levels a. of temperature fluctuations ( ( E , ) ~  = Po(a,) 
Thus, the latter quantity (qJ2 is quite meaningful as it gives an insight into the actual 
contributions to the total average dissipation rate since the probability of occurrence 
of each realization associated with each level a, of temperature is already taken into 
account. On the other hand, the former quantity ( c ~ ) ~  does not allow one to quantify 
the contribution of events to the total average dissipation since their probability of 
occurrence is not taken into account. Note that, with the normalization adopted in this 
paper, this integral is in fact equal to zero since all variables are centred with respect 
to their mean value, i.e. (eo,J2 da, = 0. Indeed, results presented so far clearly show 
that the main contributions to the correlation coefficients are from small but most 
frequent fluctuations and not from very large but very rare ones, and we think that 
both types of results are worth being reported and compared. For instance, results 
reported for conditional temperature dissipation in grid-generated turbulence by 
Jayesh & Warhaft (1992) reveal that the large temperature fluctuations corresponding 
to the p.d.f. exponential tails are associated with large dissipation fluctuations when 
there is a uniform mean temperature gradient. This is very important for the basic 
understanding of the flow properties since strong smearing is occurring with the rare 
strong temperature fluctuations associated with the exponential tails. However, it is not 
possible to infer from such results the actual contribution of such rare events to the 



Joint statistics of a passive scalar and its dissipation 191 

overall mean statistics of the flow which we believe are very important for modelling 
the mixing process: indeed it is the quantity ( E ~ ) ,  which appears in the transport 
equation for the scalar p.d.f. (e.g. Bilger 1993; Sahay & O’Brien 1993). 

In the boundary layer, in the region where temperature fluctuations are almost 
symmetrical (figure 9 b, y+ = 60), the 8-p.d.f. is practically Gaussian (So = 0, F = 2.8) 
and the conditional dissipation ( E , ) ~  is quite symmetrically distributed with respect to 
negative and positive temperature fluctuations. The deviations from one flat 
distribution are very small as they attain at most the level of the r.m.s. of this quantity, 
whereas the greatest fluctuations of E, can be larger than 20 times the r.m.s. (figure 3). 
As a consequence of these previous observations, the weighted contribution ( E ~ ) ~  to 
the centred mean is also very flat. On the other hand, close to the wall (figure 9a, 
y+ = 3), where the 8-p.d.f. is asymmetrical - owing to the limit resulting from the wall 
temperature - ( E , ) ~  strongly depends on O0, retaining negative values (i.e. almost equal 
to the ‘real zero value’ for the non-centred E, variable) for positive temperature 
fluctuations and much larger positive ones for 8, negative. The levels of conditional 
dissipation for negative temperature fluctuations are then much larger - about ten 
times larger - than those previously discussed for y+ = 60. The trend reported on this 
figure is of course the same as that obtained from the j.p.d.f. iso-contours (figure 6) but 
the conditional analysis obviously provides much more quantitative information. A 
similarly asymmetric feature is observed in the intermittent region (figure 9 c, 
y / 6  z 0.75), but the trends are opposite with respect to those obtained close to the wall 
and these asymmetries are more clearly marked. This is in agreement with the 8 
skewness factor S, and the correlation coefficient between 8 and E, which are both 
larger at y /S M 0.75 owing to strong intermittency which was shown to enhance the 
correlation (43.5). 

In the jet, results are qualitatively the same for the three typical positions (at 
X = 15DJ on the centreline where S,  M 0, in the near-field region where S, < 0, and at 
X = 15D, away from the axis where S, > 0 respectively) but they are not reported 
herein. Note that the distributions presented herein were not smoothed so that we think 
that the scatter which can be observed in figures 9(a) and 9(c) reflects convergence 
problems associated with the evaluation of the tails as a special program with a 
resolution of 40 boxes for each r.m.s. fluctuation - equal to the resolution used for the 
computation of the p.d.f.s - was used because direct evaluation from the j.p.d.f.s was 
obviously not precise enough considering the previously discussed (4 3.4) mesh grid 
resolution we used for the j.p.d.f.s. Thus, the observed oscillations with respect to the 
average distribution are indicative of the error bars associated with these distributions 
for large temperature fluctuations (1.1 > 3). This behaviour corroborates results 
obtained by Eswaran & Pope (1988) from direct numerical simulations of the turbulent 
mixing of a passive scalar showing that, for small times corresponding to a bimodal 
distribution of the scalar, dissipation is strongly dependent on the scalar level under 
consideration - with very small dissipation associated with the extremal values of the 
unmixed scalar - whereas, for larger times, when the scalar p.d.f. tends to be Gaussian, 
dissipation is nearly independent of the scalar level. 

3.7. Additional spectral information 
Other flow properties were also found to affect joint statistics of temperature and its 
dissipation, but their influence is rather smaller. Indeed, both in the boundary layer and 
the jet, squared coherence is quite small (< 0.25) over the complete frequency range 
when turbulence intensity is quite large whereas it is quite strong (> 0.5) over a large 
range of frequencies when turbulence intensity is quite small and the correlation 
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FIGURE 9. Conditional dissipations and marginal temperature p.d.f. in the boundary layer. (a) y c  = 3 ;  
(b) ,v+ = 60; (c) y/S z 0.75; ---, ( c ~ ) ~ ;  ......, , mean trend for la1 > 3;  -, marginal 
temperature p.d.f. 
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coefficient is large in magnitude (Djeridi 1992). In addition, the imaginary parts of the 
cross-spectra have the negative sign in the boundary layer and the positive one in the 
jet, and this sign is always the same in any particular flow, regardless of the considered 
position. As a consequence, the phase between temperature and its dissipation varies 
between - 180" and 0" in the boundary layer (figure 10a) and between 0" and + 180" 
in the jet (figure lob), which shows that the link between these two quantities also 
depends on the type of flow. Furthermore, these phase distributions are remarkably flat 
over a quite large range of frequencies, with oscillations for the highest frequencies for 
which spectral coherency becomes too small. Figure 1O(c) presents a schematic 
diagram showing the relative influence of the cospectrum and quadspectra at various 
positions in these two flows. Though detailed results were only reported for a few 
typical positions in this paper, we do believe that these trends are associated with a 
continuous evolution between these configurations as shown on this diagram. 

This result can be quite well understood if one considers that (a8/at)z represents eo. 
Indeed, the quadspectrum Quo, (aHiat)~(f) between 8 and (a8/at)2 is then equivalent 
(except for the multiplication by frequency f )  to the cospectrum CO(~,~ , , , ,  (as,at,z(f) 

between (aO/a t )  and (a8/at)2 since (aO/at )  is in quadrature with respect to 8. The 
integral over all frequencies of this cospectrum is proportional to the skewness factor of 
(a8/at) which is known to significantly differ from zero in turbulent shear flows, though 
it should be zero in isotropic turbulence, owing to the asymmetric distribution of 
strong temporal temperature gradients associated with discontinuities commonly 
called 'ramps' (e.g. Mestayer et al. 1976; Antonia & Van Atta 1978). There is sufficient 
evidence showing that these ramps result from the boundary conditions so that, in a 
boundary layer over a heated wall and in a heated jet, they are of opposite sign. For 
both our boundary layer and our jet, the skewness factors Saslat were found to be in very 
good agreement ((SaolatI z 1 for R, z 10CL200) with the compilation of data presented 
by Sreenivasan (1991). Figures 10(a) and 10(b) even show that the presence of the 
ramps is more apparent in the regions where temperature p.d.f.s are almost Gaussian 
and the velocity field is almost isotropic since, at these positions, the measured 
quadspectra are largest as cospectra are very small: obviously, one signal such as 
(a8/at)2 cannot be strongly correlated with both another signal and this signal time 
derivative. At the other positions, where temperature fluctuations are much more 
asymmetric, this phenomenon appears to be relatively less important as the dominant 
feature is then the temperature asymmetry. Here again, similar behaviour is obtained 
for any other terms associated with dissipation (esy, eeZ or so) as these positive quantities 
are also associated with small scales. Their behaviour is qualitatively similar to that of 
(a8/at)2 with respect to the &distribution and, consequently, to the a8/at asymmetries 
as well. 

4. Conclusion 
Results reported in this paper show that the assumption of statistical independence 

of temperature 8 and any component of its dissipation or its total dissipation is sound 
only in regions where 8-fluctuations are almost symmetrical. This result is important 
for various modelling problems of turbulent flows both with and without chemical 
reactions where statistical independence is often assumed. Indeed, the correlation 
coefficient between these quantities presents evolutions qualitatively similar to those of 
the temperature skewness factor. In regions where the correlation is strong, the 
interdependence results from relatively low-frequency fluctuations - lying between the 
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integral scale and the Taylor microscale - of small amplitude for both temperature and 
its squared derivatives. This seems to be associated with the low-frequency distribution 
of dissipation 'bursts' characteristic of small-scale intermittency since it was shown 
that very small dissipation fluctuations are involved. Generally speaking, similar trends 
were obtained in a boundary layer over a heated wall and in a heated jet. For instance, 
conditional dissipations show that strong fluctuations of this quantity are mainly 
associated with temperature fluctuations of quite large amplitude in regions where 
these fluctuations are asymmetrically distributed, whereas in regions where the 
temperature p.d.f. is almost Gaussian, though j.p.d.f. iso-contours show that large 
dissipation fluctuations are associated with temperature fluctuations of small 
amplitude, conditional dissipations are very flat as these large fluctuations are balanced 
by small and much more frequent ones. However, when these conditional quantities 
are weighted by the temperature p.d.f., they show that the main contribution to the 
average dissipation comes from dissipation fluctuations associated with small 
temperature fluctuations since those are the most frequent ones. This result is obtained 
both in regions where temperature fluctuations are asymmetrically distributed and in 
regions where they are symmetrically. 

As the connection between temperature and its dissipation was found to be 
associated with frequencies of the order of that corresponding to Taylor's microscale, 
it seems that results reported in this paper will still be valid in other flows with similar 
boundary conditions and larger Reynolds number since the spectra for the squared 
derivatives will also present non-negligible low-frequency contributions in such flows. 
Indeed, it is well known that small-scale intermittency tends to increase with increasing 
Reynolds numbers (e.g. Monin & Yaglom 1975; Gagne 1987). Nevertheless, for a more 
fundamental approach to the problem, one of the important results is also that the link 
between temperature and its dissipation is related to the temperature ramps resulting 
from the large-scale flow boundary conditions : this effect results in phases varying 
between - 180" and 0" in the boundary layer and between 0" and -t 180" in the jet. 

Finally, we hope that results reported herein will motivate analyses in order to better 
determine the temporal and spatial organization of structures responsible for the 
observed link. Indeed, our results can be associated with other findings (e.g. George & 
Hussein 1991) suggesting that 'the small-scale motions remain closely related to the 
large-scale coherent motions, so that anisotropy could be observed over the entire 
spectral range if the large-scale motions are anisotropic'. It is interesting to mention 
that the study concerning small-scale intermittency which has been recently developed 
at IMST (Vaienti et al. 1994) may help understand these connections in more detail as 
it appears that the conditional-average quantity (.c,/AO(r)) (where A0(r) denotes the 
temperature difference B(x + r )  - B(x), with r a separation which may lie within or 
outside the inertial range) is one of the terms which are important and need to be 
modelled when the p.d.f. transport equation for the temperature difference AO(r) is 
studied. Indeed, when r is large, A0(r) is equivalent to 0, whereas when r tends to 7, 
AB(r) is equivalent to (adlax). 
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